11. Januar 2016

Wie Kupfer organische Leuchtdioden effizienter macht

Der Einsatz von Kupfer als Leuchtstoff ermöglicht kostengünstige und umweltverträgliche organische Leuchtdioden (OLEDs). Dabei sorgt die thermisch aktivierte verzögerte Fluoreszenz (TADF) für eine hohe Lichtausbeute. Wissenschaftler des Karlsruher Instituts für Technologie (KIT), der CYNORA GmbH und der Universität Saint Andrews haben nun das zugrundeliegende quantenmechanische Phänomen des Intersystem Crossing in einem Kupferkomplex gemessen. Die Ergebnisse der Grundlagenarbeit, welche die Forscher in der Zeitschrift Science Advances vorstellen, tragen zu energieeffizienteren OLEDs bei.

Farbstoffe als Grundlage für organische Leuchtdioden werden dank dem Wissen über ihre Quantenmechanik maßgeschneidert [Bild: Karlsruher Institut für Technologie (KIT) ]

Organische Leuchtdioden gelten als Lichtquelle der Zukunft. Sie geben Licht gleichmäßig in alle Betrachtungsrichtungen ab, liefern brillante Farben und hohe Kontraste. Da OLEDs (Organic Light Emitting Diodes) sich auch transparent und flexibel herstellen lassen, eröffnen sie neue Anwendungs- und Gestaltungsmöglichkeiten, wie flächige Lichtquellen auf Fensterscheiben oder rollbare Displays. 



OLEDs bestehen aus ultradünnen Schichten organischer Materialien, die als Emitter dienen, zwischen zwei Elektroden. Beim Anlegen einer Spannung werden Elektronen von der Kathode sowie Löcher (positive Ladungen) von der Anode in den Emitter injiziert. Dort treffen Elektronen und Löcher zu gebundenen Elektronen-Loch-Paaren zusammen. Bei diesen sogenannten Exzitonen handelt es sich um Quasiteilchen im angeregten Zustand. Sie zerfallen anschließend in ihren Ausgangszustand und geben dabei Energie frei.

Allerdings können die Exzitonen zwei verschiedene Zustände annehmen: Singulett-Exzitonen zerfallen sofort wieder und senden Licht aus, während Triplett-Exzitonen ihre Energie als Wärme freigeben. In OLEDs treten gewöhnlich 25 Prozents Singuletts und 75 Prozent Tripletts auf. Um die Energieeffizienz einer OLED zu erhöhen, müssen auch die Triplett-Exzitonen zur Lichterzeugung genutzt werden. Dies geschieht in herkömmlichen organischen Leuchtdioden durch die Beimischung von Schwermetallen wie Iridium oder Platin, die teuer und nur begrenzt verfügbar sind sowie aufwendige Herstellungsverfahren bedingen.

Eine kostengünstigere und umweltverträglichere Möglichkeit besteht im Einsatz von Kupferkomplexen als Emittermaterialien. Dabei sorgt thermisch aktivierte verzögerte Fluoreszenz (TADF – Thermally Activated Delayed Fluorescence) für hohe Lichtausbeute und damit hohe Effizienz: Triplett-Exzitonen werden in Singlet-Exzitonen verwandelt, die wiederum Photonen aussenden. TADF beruht auf dem quantenmechanischen Phänomen des Intersystem Crossing (ISC), einem Übergang von einem elektronischen Anregungszustand in einen anderen mit veränderterer Multiplizität, beispielsweise vom Singulett zum Triplett und umgekehrt. Bei organischen Molekülen bestimmend ist dabei die Spin-Bahn-Kopplung, das heißt die Wechselwirkung des Bahndrehimpulses eines Elektrons in einem Atom mit dem Spin des Elektrons. So lassen sich alle Exzitonen, Tripletts wie Singuletts, zur Lichterzeugung nutzen. Kupfer als Leuchtstoff erreicht mit TADF eine Effizienz von 100 Prozent.

Stefan Bräse und Larissa Bergmann vom Institut für Organische Chemie (IOC) des KIT haben nun gemeinsam mit Forschern des OLED-Technologie-Unternehmens CYNORA und der Universität Saint Andrews in Groß-Britannien erstmals die Geschwindigkeit des Intersystem Crossing in einem hoch lumineszierenden Kupfer(I)-Komplex in festem Zustand mit thermisch aktivierter verzögerter Fluoreszenz gemessen. Über die Ergebnisse berichten sie im Magazin Science Advances. Als Zeitkonstante für das Intersystem Crossing von Singulett zu Triplett ermittelten die Wissenschaftler 27 Pikosekunden (27 billionstel Sekunden). Der umgekehrte Vorgang – Reverse Intersystem Crossing – von Triplet zu Singulett geht langsamer vonstatten und führt zu einer TADF, die durchschnittlich 11,5 Mikrosekunden anhält. Diese Messungen führen zu einem besseren Verständnis der Mechanismen, die zu TADF führen, und erleichtern damit die gezielte Entwicklung von TADF-Materialien für energieeffiziente OLEDs.

Larissa Bergmann, Gordon J. Hedley, Thomas Baumann, Stefan Bräse, Ifor D. W. Samuel: Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state. Science Advances, January 2016. DOI: 10.1126/sciadv.1500889




 
 

Neue Stellenanzeigen

Seit 2002 vermittelt on-light JOBS - ON-LIGHT-jobs.com - Das Jobportal im Lighting Business!

Aktuelle Branchennews

Großes DALI-2 Sensor-Sortiment

Als eines von 28 regulären Mitgliedern der...

Premiumbeleuchtung neu definiert – ams OSRAM präsentiert neue Quantum Dot LED

Hauseigene Quantum Dot Technologie sorgt auch bei...

LiTG Publikation 44 - »Museumsbeleuchtung«

Tages-/ Kunstlichtplanung unter...

Leuchten mit starker Präsenz

Foscarini Leuchten Allegro und Allegretto setzen...

HL-06 - Die LED-Hallenleuchte ohne Ecken und Kanten

Besonders reinigungsfreundlich präsentieren sich...

IKU - Das Downlightsystem für Human Centric Lighting

Der Mensch mit seinen Aktivitäten steht im...

D Studio - Eine neue Design-Destination in Kopenhagen

Design Holding, Heimat ikonischer Marken von B&B...

Hell, heller, Stradox

Preiswert und zuverlässig – Wasco präsentiert...

Dramaturgie in Schwarz-Weiß

Der U-Bahnhof „Rotes Rathaus“ in Berlin -...

Neuer Blog zu Licht und Leuchten

Ab sofort online von Regiolux - Eine neue,...

FLOS Bespoke für die Bourse de Commerce – Pinault Collection

Ronan und Erwan Bouroullec haben den Eingang, das...

TUBS von GROK by LEDS C4 - Unendliche Kompositionsmöglichkeiten

Die modularste Produktfamilie von GROK by LEDS C4...

Produkt des Monats

Anzeige

Produkt des Monats
Juli 2021

Helvar RoomSet - Professionelle LED-Beleuchtung für Räume



Projekt des Monats

Anzeige

Projekt des Monats
Juli 2021

Commercial Court Stuttgart – Integratives Beleuchtungsdesign



Im Portrait

Im Portrait

Handgefertigte Premiumleuchten für den maritimen Bereich



Newsletter

 

 

ON-LIGHT | Licht im Netz®  —  Moritz-Walther-Weg 3  —  D-67365 Schwegenheim  —  info(at)on-light.de  —  www.on-light.de